Li-Ion batteries are rechargeable devices with higher performances and efficiency than the traditional non-rechargeable alkaline and zinc-carbon batteries, thanks to the high energy density, the resistance to self-discharge and the reduced memory effect. Li-Ion batteries are widely used for consumer electronic (mobile phones, tablet, laptop…), automotive (EV Electric Vehicles), and large scale energy storage. The characterization of the physical properties of the several components – electrodes, separator, electrolyte – is crucial in research & development to improve the performances (capacity, durability..) of the Li-Ion batteries, as well as in quality and production control.
Alfatestlab has the technologies and the competences to support your Li-Ion batteries characterization needs.
Porosity, Particle Size and Shape, Packing Density, viscosity: all these characteristics influence the performances (life, charge cycling) and the capacity of the electrodes of a Li-Ion battery. Porosity for instance, influences the interactions between the active material and the conductive diluent and is essential for the transport of Li-Ion between the electrodes. Particle Size and shape have to be controlled in order to ensure a high packing density (polydisperse size and circular shape) and high power. Electrodes showing high surface area have a better efficiency in the electrochemical reactions and a better ion exchange between electrolyte and electrode, at the same time electrodes showing low surface area and high density materials normally offer a longer lifetime.
Regarding the initial slurry, its quality will strongly depend on the properties of the powder, mixed with solvents and binder, to get the correct fineness of the grain, solid content and viscosity for the process. The rheological properties of the powder will rule the mixing dispersion to create the slurry. Viscosity of the slurry itself will have a meaningful influence to obtain a proper coating and a correct calendering and therefore to ensure the quality of the final electrodes.
Calendering process is the most important part in the process of electrodes production, i.e. the common compaction process for lithium-ion battery electrodes. Calendering has a
substantial impact on the pore structure and therefore the electrochemical performance of Lithium-ion battery cells. Increasing the calendaring will decrease the thickness and by consequence the percentage of porosity of the electrode. Above the correct level of calendering, the pore size and the porosity can be reduced to the point to cause a loss of capacity and a bad longevity in cycle performance.
In Alfatestlab technological platform includes:
The separator has the function to isolate the cathode from the anode, at the same time the separator has to promote as a catalyst the flow of the ions from cathode to anode during the charge and oppositely during discharge. The separator membrane is normally made of a highly porous material, like polyolefins and is wetted with the electrolyte.
The porosity is by default a fundamental parameter to be measured and controlled, since a high porosity tend to keep the electrolyte entrapped within the pores that helps the ionic movement from cathode to the anode and gives a higher energy density. On the other hand a too high porosity can limit the capacity of the separator to shut down and generate overheating of the battery closing the pores.
Alfatestlab can support you to achieve uniform porosity, constant flow of ions and an homogeneous current distribution by controlling the porosity. The pore size distribution of the membrane has to be smaller than the particle size of the electrodes material to prevent from entering the separator pores.
The affinity between the material used in the separator membrane and the electrolyte, that will affect the mechanism of transport, can be evaluated measuring the Zeta Potential.
In Alfatestlab we provide:
Contact us to discuss your analytical needs
More details here below on our analytical services for Li-ion batteries: